전체메뉴

검색
팝업창 닫기
이메일보내기

‘매의 눈’ 인공지능으로 연료전지 표면 결함 실시간 검사한다

표준연 광영상측정표준팀, 생산공정중 실시간으로 3D 측정해 판별

딥러닝 기반 패턴주사 방식으로 반사율 낮거나 패턴 다양한 표면도 원샷 측정

KRISS 광영상측정표준팀 연구진. 사진제공=KRISS




한국표준과학연구원(KRISS)은 KRISS 광영상측정표준팀이 연료전지 표면의 미세한 결함을 생산 공정에서 실시간으로 감지할 수 있는 기술을 개발했다고 26일 밝혔다.

이번에 개발한 기술은 딥러닝 기반의 실시간 3D 측정기술로 단 한 번의 촬영으로 표면 형상의 결함을 찾아낼 수 있어 제조 공정의 가동을 멈추지 않고도 품질을 모니터링할 수 있다.

표면 형상의 실시간 3D 측정에는 원샷 패턴 주사방식이 활용된다. 물체 표면에 촘촘한 복합 격자무늬 패턴을 지닌 빛을 조사한 후, 반사되어 변형된 패턴을 분석하여 흠집이나 손상 등의 3차원 정보를 얻어내는 측정법이다.

이 방식의 단점은 표면의 반사율이 낮거나 다양한 패턴이 섞여 있는 형태의 경우 측정이 불가능하다는 점이다. 예를 들어 연료전지의 핵심부품인 금속분리판은 표면이 울퉁불퉁한 스테인리스(SUS) 소재로 되어 있어 산업 현장에서 실시간 3D 검사가 어렵다.

KRISS 광영상측정표준팀은 이 같은 한계를 극복하기 위해 패턴주사 방식에 인공지능 알고리즘을 도입했다. 자체 개발한 신개념 딥러닝 네트워크 DYnet++에 수천개 이상의 표면 형상 측정데이터를 학습시켜 빛 반사율이 낮거나 복잡한 형태의 표면도 실시간으로 3D 형상 측정이 가능하다.



연구진은 이번 기술을 연료전지 샘플에 적용하기 위해 표면 결함이 있는 금속분리판 데이터를 인공지능 알고리즘에 추가로 학습시켰다. 적은 양의 데이터 학습만으로도 응용력을 갖춰, 3D 형상 측정 결과 2D 검사로는 판별이 어려웠던 샘플 표면의 찍힘과 스크래치가 단 한번의 촬영으로 감지됐다.

이번 기술은 측정 대상의 형태나 크기와 관계 없이 생산 라인에 손쉽게 탑재할 수 있어 외부 진동 및 온도 변화가 큰 생산과정 중에도 자동으로 불량 여부를 검사 가능하다. 연료전지를 포함한 다양한 제조업 분야에서 생산성 향상, 품질 개선, 비용 절감 등을 통해 스마트 팩토리 도입에 기여할 수 있다.

김영식 KRISS 광영상측정표준팀장은 “이번 기술을 활용하면 연료전지 금속분리판의 다양한 불량과 결함을 실시간으로 판별할 수 있다”며 “최근 활발히 보급되고 있는 연료전지의 성능을 극대화하고 내구성과 안전성 향상에 기여할 성과”라고 밝혔다.

KRISS는 이번 기술을 다양한 산업현장에 적용할 수 있도록 후속연구를 이어갈 예정이다.

이번 연구의 성과는 전기자기 분야 국제권위지인 ‘IEEE Transactions on Industrial Electronics(IF: 8.162)’에 3월 온라인 게재됐다.
< 저작권자 ⓒ 서울경제, 무단 전재 및 재배포 금지 >
주소 : 서울특별시 종로구 율곡로 6 트윈트리타워 B동 14~16층 대표전화 : 02) 724-8600
상호 : 서울경제신문사업자번호 : 208-81-10310대표자 : 손동영등록번호 : 서울 가 00224등록일자 : 1988.05.13
인터넷신문 등록번호 : 서울 아04065 등록일자 : 2016.04.26발행일자 : 2016.04.01발행 ·편집인 : 손동영청소년보호책임자 : 신한수
서울경제의 모든 콘텐트는 저작권법의 보호를 받는 바, 무단 전재·복사·배포 등은 법적 제재를 받을 수 있습니다.
Copyright ⓒ Sedaily, All right reserved

서울경제를 팔로우하세요!

서울경제신문

텔레그램 뉴스채널

서경 마켓시그널

헬로홈즈

미미상인